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Summary 
The USES-LCA model with its data set on 181 substances was used to learn to understand the 

possible role of regression models for a simplified model on the basis of a (future) base model. 

Prior to carrying out the regression analyses, however, a number of theoretical analyses of the 

mathematical structure of the USES-LCA model was undertaken. These give clues towards the 

model specification in the regression model: which variables to include, and which 

transformations (logarithms, squares, etc.) to perform. 

 

After a combination of theoretical analysis, statistical analysis and trial-and-error, we were 

able to deduce regression models that account for a substantial amount of variance (often 70-

90%) of the logarithm of the characterisation factors for aquatic and terrestrial ecotoxicity and 

human toxicity for different emission compartments (air, water and soil) on the basis of 2 or 3 

variables. These variables are: a measure of toxicity (the MTC for ecotoxicity or the ADI 

and/or the TCL for human toxicity), a measure of persistence (the DT50, most often for the 

emission compartment), and sometimes the Henry coefficient. A closer analysis for one of the 

toxicity potentials reveals an error by a factor of less than 6 for almost all substances.  

 

The analysis also makes clear that there is a strong and opposite relation between goodness-of-

fit and data availability. Good predictions can be made on the basis of more variables, and thus 

for fewer substances. We conclude that it might be useful to develop not just one simplified 

baseline model, but rather to develop a hierarchy of estimation methods, for instance a low-

quality one that is based on molecular weight alone, a somewhat better one that needs one 

additional parameter, a still better one that needs three parameters, etc. Predictions from each 

of these simplified models can be accompanied by an estimated uncertainty of the prediction. 
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1. Introduction 
Characterisation factors for toxicity-related impact categories cover three dimensions: fate, 

exposure and effect. It is current practice to use multi-media fate models for the fate 

dimension, bioconcentration factors and intake models for the exposure, and reference doses, 

like no-effect concentrations and acceptable daily intakes for the effect part. All these models 

require two types of parameters: environment-specific parameters, like the wind speed and the 

fraction of organic carbon in soil, and substance-specific parameters, like the chemical's half 

life in water and the vapour pressure. Where the gathering of environment-specific parameters 

is a one-time job, substance-specific parameters must be collected for every substance under 

consideration. Especially for the fate and exposure part of the characterisation models, this 

substance-specific data demand is quite large. And as there are hundreds of thousands of 

substances that may be emitted by industry, and as there are important data gaps for a large 

part of those substances, it emerges that finding characterisation factors by running the current 

characterisation models is problematic for a large number of substances. It is therefore natural 

to look for shortcuts in finding characterisation factors. 

 

Certain characterisation models start from the idea of poor data availability, and develop 

approaches that are based on completely different principles than the “correct” models. For 

instance, there are methods that come up with three indicators, one for persistence, one for 

bioaccumulation, and one for toxicity. In addition, these three indicators may be combined 

with a simple rule. A disadvantage of these methods is that both indictors and combination 

rules are based on “heuristic” considerations. More specifically, they are not derived from the 

“correct” model, but represent an independent view on which aspects are critical for toxicity 

assessment. A perhaps even more important disadvantage of such methods is that they provide 

metrics that are incommensurable with those provided by a more detailed model. 

 

Another option is to establish statistical relationships between the outcome of the “correct” 

model and a subset of its underlying parameters. For instance, if a simple formula can be found 

that links the vapour pressure of a chemical to its characterisation factor for a number of 

substances, one might apply this formula to a number of different substances. The framework 

of regression analysis provides a basis for identifying such statistical relationships (see Meent 

et al., 2002). The present document focuses on an investigation of the feasibility of using a 

regression model to estimate characterisation factors in a metric that is commensurable with 

the more detailed ones. In a sense, such a regression model is comparable to the approaches 
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taken by analysts of (quasi) structural activity relationships (SAR/QSAR; see e.g. Lyman et al., 

1990), which is also employed in many detailed fate and exposure models (such as USES; 

Linders & Jager, 1998). 

 

2. The basics of regression analysis 
Regression analysis (see, e.g., Dobson, 1983, Draper & Smith, 1998, Greene, 1997) is a 

widely-used statistical tool in ecology, econometrics and the behavioural sciences to identify 

relationships between one or more input variables (the “independent” variables) and one or 

more output variables (the “dependent” variables). Depending on the number of independent 

and dependent variables, one distinguishes simple regression, multiple regression and so on. 

Moreover, there are types of regression analysis with special features, known under names like 

logistic regression, constrained regression and weighted regression. In this text , the emphasis 

is on the classical multiple regression analysis. 

 

It is assumed that there is one dependent variable, y (here: the characterisation factor). For a 

number of N cases (here: substances) a value of y is given. This set of values can be denoted as  

 Nyyy ,,, 21 K  (1) 

A conventional way of writing is with vector notation: 
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It is also assumed that there are k independent variables (here: substance-specific data, like the 

molecular weight and the half life in air) for the same N cases. The value for case (= substance) 

i on variable j is denoted by xij. A tableau of these values can be written as 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

NkNN

k

k

xxx

xxx
xxx

L

LLLL

L

L

21

22221

11211

X  (3) 

One of the purposes of regression analysis is to submit the hypothesis of a linear relationship 

between X and y to a statistical test, and to estimate the optimal coefficients in this 

relationship. Let the relationship be specified as 

 kikiii bxbxbxay ++++= L2211ˆ  (4) 

or in matrix notation as 
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 Xby += aˆ  (5) 

where a is the intercept, and b is a vector of coefficients. One writes ŷ  instead of y  to make 

clear that a perfect fit is not achievable, and that the lefthand side will be an approximation to 

the measured data. The coefficients a and b are still to be determined here, and one needs to 

establish a criterion when the fit is said to be best and the coefficients are said to be optimal. 

This criterion is a formal translation of the requirement that ŷ  should be as close as possible to 

y . The conventional operationalisation of this requirement is that the mean square deviation of 

measured1 and estimated dependent variable is minimal. Thus, 

 ( )∑ −
=

N

i
ii yy

1

2ˆ  (6) 

should be minimised. 

 

From this objective function, values for the coefficients a and b can be estimated. Moreover, 

under certain assumptions concerning the distribution of the error term of the fit, the standard 

errors of the estimates a and b can be computed. A formal test of significance of each 

coefficient can be performed with the t-statistic: it shows if a certain coefficient differs 

“significantly” from zero, hence if the data provides evidence that the variable is a predictor 

variable. The overall goodness-of-fit is expressed in the coefficient of determination, R2. It is 

given by 
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where y  denotes the mean value of the elements of y. This coefficient measures the fraction 

of variance in the dependent variable that is accounted for by the statistical model. A value of 

1 indicates a perfect fit, a value of 0 complete misfit, and anything in between a partial fit. For 

instance, R2 = 0.6 means that 60% of the variance in y (here: the characterisation factor) can be 

explained2 by the model. Whether or not this is good enough, is open to discussion. 

Econometricians and psychologists are often glad to find such values, while the natural 

sciences will often not be satisfied with such a result. It also depends on the purpose of the 

analysis. There is a statistical test for the significance of the coefficient of determination. It 

                                                      
1 It is usual to speak about measured and estimated values, even though in the present case the former set does not 

represent truly measured values, but model outcomes. 
2 Explained here refers to a non-causal and purely statistical relationship: it means that the regression model 

accounts for the given percentage of variance. 
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expresses the probability that the real R2 is zero, based on an f-statistic. Another interesting 

result of regression analysis is the standard error of the estimate 

 
( )

kN

yy
se

N

i
i

−

∑ −
= =1

2ˆ
 (8) 

It can be used to construct confidence intervals around predictions made by the regression 

model. If iŷ  is such a prediction, a 95%-confidence interval is given by 

 ( ) ( )[ ]sepkNdftysepkNdfty ii 05.0,ˆ,05.0,ˆ 22 =−=+=−=−  (9) 

where t2 indicates the critical value of the t-distribution at the specified number of degrees of 

freedom and the chosen two-sided significance level of 95%. 

 

3. The role of characterisation models 
One might be tempted to submit the characterisation factors directly to a regression analysis. 

However, this is not a very efficient approach. The reason is, that one of the problems of 

regression is to choose the right model. The issue of model specification suffers from a number 

of problems. 

 

A first question is: which variables should be part of the model equation? Although a t-test of a 

regression gives a clue to the question if a variable matters at all, things are in reality not so 

easy. The assumptions of applying the t-test for a coefficient are not always completely met. 

These assumptions include the requirement that the residual follows a normal distribution with 

a constant standard deviation, and that the independent variables are non-correlated. Especially 

when some of the independent variables are strongly correlated, the issue of multicollinearity 

arises. This may produce a high R2 with low t-values for the individual coefficients. In the 

present case, it is likely that some of the variables will be highly correlated. The half life in sea 

water, for instance, will in many cases be the same as that for fresh water. And terrestrial no-

effect levels are often derived from aquatic no-effect levels. Use of these types of “prior” 

information seems to be essential in preventing multicollinearity, and resolving the model 

specification. 

 

A next question concerns the functional relationship employed. Although regression analysis is 

ordinarily linear regression, this does not mean that the independent variables should directly 

come from the parameters that are present. They may rather be replaced by their square, square 

root, logarithm, or any other transformed form. In principle, this leads to a very large number 
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of regression models to be tested: one in which the vapour pressure is the independent 

variable, one in which it is the square of the vapour pressure, one in which it is the logarithm 

of the vapour pressure, etc. Fortunately, we have prior knowledge of the underlying model. On 

the grounds of the structure of the model equations, we can deduce the best way in which 

certain variables should occur in the regression equation. For some other variables, this is less 

easy from theoretical considerations, but we can employ numerical simulations to study the 

dependence of a dependent variable on one of the independent variables. We then pick one 

case, i.e. one characterisation factor for one substance, keep all input parameters constant but 

vary one parameter, say the air-water partition coefficient over a very large range of values. 

The result can be plotted, and the resulting graph often suggests the mathematical form of the 

dependence: linear, logarithmic, hyperbolic, etc. 

 

4. Preparatory work: removing the effect aspect 
Let us first examine the structure of the characterisation model. It consists of a large amount of 

model equations, but the essential features can be grasped by decomposing it into two or three 

elements: fate, effect and, for human endpoints, intake. For the ecosystem endpoints we then 

have the form 

 fiffi FEQ =  (10) 

where Ffi represents the fate factor that accounts for the transport of a chemical from the initial 

compartment i to the final compartment f, and Ef represents the effect factor that accounts for 

the sensitivity of a chosen endpoint in final compartment f. The characterisation factor is then 

given by Qfi. For human endpoints the form is 

 fifi FEIQ =  (11) 

where If accounts for the transfer of the chemical by intake route f. 

 

Both forms point to a multiplicative model, and are clearly not in agreement with the linear 

additive form that is assumed by the regression analysis. However, a logarithmic 

transformation leads to the additive form: 

 fiffi FEQ lnlnln +=  (12) 

and 

 fifi FIEQ lnlnlnln ++=  (13) 
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An additional advantage of the logarithmic transformation is that the differences in scale of the 

characterisation factors are reduced. After all, one should realise that characterisation factors 

are normally specified per kg of chemical, regardless of whether it is a relatively harmless 

substance that is regularly emitted in quite large quantities (like dichloromethane) or an 

extremely poisonous substance that is severely regulated (like dioxin). Characterisation factors 

can easily span 10 orders of magnitude or more, and such large differences in scale can create 

a biased picture in the least squares fit of regression analysis. A logarithmic transformation 

reduces the scale differences to a much better range, with a much lower number of possibly 

influential data points. 

 

A next step is, in the case of ecosystem toxicity, to investigate the influence of the fate and 

effect part on the characterisation factors. The effect factor is in general determined by some 

no-effect level (NEL, e.g. an LC50) a to which a safety factor (SF) is applied: 

 
ff

f NELSFPNEC
E

×
==

11
 (14) 

Both no-effect level and safety factor are not influenced by the fate parameters, like vapour 

pressure and octanol-water partition coefficient, but they are specified as measured data items 

(for the no-effect level) and fixed data items (for the safety factor). The PNEC itself is 

therefore of direct relevance in the regression equation. And as we chose to use the logarithm 

of the effect factor, and ln 1/x = –ln x, we obtain 

 fiffi FPNECQ lnlnln +−=  (15) 

for the regression equation. 

 

5. First analysis with real data 
The USES-LCA model (Huijbregts, 1999) with its data set on 181 substances was used to 

learn to understand the possible role of regression models for a simplified model on the basis 

of a detailed model. 

 

Choosing as an example the fresh water compartment as the emission compartment and as the 

target ecosystem compartment (hence the FAETP for emissions to fresh water: FAETPwater), 

the pattern looks quite promising; see Figure 1. A regression analysis yields an R2 of 0.88, with 

only one independent variable. This means that for the chosen case only 12% of the variance in 

the logarithm of the characterisation factor can be explained by the fate modelling. Indeed, the 
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variation in the concentration in fresh water is much smaller (three orders of magnitude) than 

the variation in the characterisation factor (ten orders of magnitude). 

 

Figure 1. Relation between the logarithm of the effect parameter (MTCwater) and the 

logarithm of the characterisation factor (FAETPwater) for effects of emissions to fresh 

water on freshwater aquatic ecosystems. 

 

Notice that, in the above, the emission and the effect compartment were the same. The fate 

aspect included degradation in the fresh water compartment and transport to other 

compartments, but not transport from other compartments. If we want to understand the multi-

media behaviour of chemicals more completely, we should address relationships between, say, 

the air as an emission compartment and the fresh water as a target compartment. Figure 2 

shows how the logarithms of these variables depend. A regression analysis gives an R2 of 0.66. 

This means that the fate aspect is in this case responsible for 34% of the variance of the 

logarithm of the characterisation factor. 
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Figure 2. Relation between the logarithm of the effect parameter (MTCwater) and the 

logarithm of the characterisation factor (FAETPair) for effects of emissions to air on 

freshwater aquatic ecosystems. 

 

It appears that a separate study of the dependence between fate parameters and the 

concentrations in various compartments is an important step to make. 

 

6. Theoretical analysis of the fate aspect 
The fate aspect of a characterisation model can be defined as the operation of a fate factor that 

transforms an emission size (Ei) into a concentration (PECf): 

 ifif EFPEC ×=  (16) 

For the emission size, it is usual to always use a unit amount of 1 kg (or 1 kg per time unit). 

The fate factor itself is determined by a large number of parameters. The general structure of 
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the fate model can be derived as a system of differential equations on the basis of the 

conservation of mass (Heijungs, 1995): 

 )()(
d

)(d tt
t
t bAcc

+=  (17) 

where c(t) is the vector of concentrations in the various compartments at time t, b(t) is the 

vector of emission sizes to these compartments, and A is a square matrix that contains all the 

multi-media transport and degradation coefficient that govern the fate of the chemical. As we 

are interested in the steady-state situation, the lefthand side of the differential equations will 

vanish, and the time parameter at the righthand side can be dropped. Thus, one obtains 

 bAc0 +=  (18) 

When A and b are specified, one can compute the concentration vector by matrix inversion: 

 bAc 1−−=  (19) 

When only one element of the emission vector b is non-zero, namely the one for the initial 

compartment i, when this emission size is 1 by definition, and when one is interested in the 

concentration in one specific compartment, the final compartment f, this equations reduces to 

 ( )iffPEC 1−−= A  (20) 

where we have replaced (c)f by the more familiar PECf. Although only one element of a large 

matrix is involved in connecting the concentration in the final compartment to the initial 

release compartment, this element is part of an inverted matrix. It is important to realise that 

one element of an inverted matrix depends on all elements of the original matrix. Therefore, 

the structure of the original matrix is relevant for an analysis of the causal relationships in the 

characterisation model. 

 

The matrix with fate coefficients A is built up from a number of elements3: 
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The essential elements here are the following: 

 ADVij represents the advective flow from compartment i to compartment j; 

 DIFFij represents the diffusive flow from compartment i to compartment j; 

 kdegi represents the degradation in compartment i. 

All these terms are in their turn composed of several other parameters. For instance, 

                                                      
3 We have left out some volume-related coefficients in these equations, because these are the same across the set of 

substances, and would complicate the discussion. A model-specific change of such a parameter induces changes in 

regression constants, but not in the regression models. 
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50

2ln
DT

kdeg =  (22) 

and similar formulas can be specified for the advective and diffusive flows, often involving 

partition coefficients.. 

 

Let us start with the ignoring the transport from other compartments, and restrict the discussion 

to degradation within one single medium. The matrix A then has a diagonal structure: 
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and its inverse is simply 
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This leads to 

 2lnlnlnlnln 50 −=−= DTkdegPEC  (25) 

as a relationship within one single compartment, neglecting multi-media transport. The 

constant term ln ln 2 has no meaning, because it is based on the simplification to leave out the 

volume-related terms. 

 

7. Second analysis with real data 
So far the theoretical simplification. Figure 3 shows the situation of the fresh water 

compartment as emission and target compartment, with the logarithm of the (bio)degradation 

on the horizontal and the logarithm of the concentration on the vertical axis. In this figure the 

non-degradable substances (metals) have been left out. 

 



OMNIITOX – SBM regression approach  2003-04-01 

12 

 

Figure 3. Relation between the logarithm of the half life in water (DT50water) and the 

logarithm of the concentration (Cwater_water) for emissions to water. 

 

We see a clear straight line that appears to mark a sort of forbidden area at the left upper side 

of the graph. The area at the right lower side of the line contains points corresponding to 

substances that have migrated to other compartments before they would have been annihilated 

by the decay process. For similar cases, for instance for the atmospheric compartment, we see 

a similar straight line with a forbidden area. 

 

A further analysis of the fate aspect then includes the multi-media transport aspect. The 

analytical methods employed above can no longer be used, because the structure of the A 

matrix and hence its inverse matrix becomes too complex. We have to rely on a combination 

of intuition, visual inspection and statistical analysis. It is clear that some sort of partition 

coefficient should be accountable for the multi-media transport. When we extract the transport 

aspect of the previous aquatic example, a regression on the logarithm of the Henry's law 
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constant and the logarithm of the octanol-water partition coefficient yields an R2 of 0.42. This 

regression, however, is restricted to only 45 substances for which all these data items were 

available. 

 

8. Some regression results 
Table 1 gives an overview of some selected regression results, where metals have been left out. 

The total analysis included 168 substances. 

 

Table 1. Regression results for 168 out of 181 substances (excluding metals). 

 

Dependent variable Independent variables N R2 

ln FAETPair ln MTCwater, ln HENRY, ln DT50water 45 0.912 

ln FAETPair ln MTCwater, ln DT50water 157 0.725 

ln FAETPwater ln MTCwater, ln HENRY, ln DT50water 45 0.906 

ln FAETPwater ln MTCwater, ln DT50water 157 0.913 

ln FAETPsoil ln MTCwater, ln HENRY, ln DT50water 45 0.804 

ln FAETPsoil ln MTCwater, ln DT50water 157 0.695 

ln TETPair ln MTCsoil, ln HENRY, ln DT50soil 17 0.918 

ln TETPair ln MTCsoil, ln DT50soil 56 0.35 

ln TETPwater ln MTCsoil, ln HENRY, ln DT50soil 17 0.837 

ln TETPwater ln MTCsoil, ln DT50soil 56 0.219 

ln TETPsoil ln MTCsoil, ln HENRY, ln DT50soil 17 0.926 

ln TETPsoil ln MTCsoil, ln DT50soil 56 0.85 

ln HTPair ln ADI, ln TCL, ln DT50air 45 0.903 

ln HTPair ln ADI, ln DT50air 139 0.624 

ln HTPwater ln ADI, ln TCL, ln DT50water 46 0.859 

ln HTPwater ln ADI, ln DT50water 144 0.794 

ln HTPsoil ln ADI, ln TCL, ln DT50soil 46 0.852 

ln HTPsoil ln ADI, ln DT50soil 144 0.765 

 

We see that the regression results are not too bad: in many cases we find an R2 of 0.8 or higher 

for a large part of the substances on the basis of only two or three parameters. 
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Let us consider one of the regression models in more detail. The FAETP for emissions to water 

can be estimated with an R2 of 0.913 on the basis of only the MTC for aquatic ecosystems and 

the half-life in water. A plot of the estimated values versus the actual values is shown in Figure 

4. 

 

 

Figure 4. The data points for the logarithm of the characterisation factor (FAETPwater) 

for effects of emissions to fresh water on freshwater aquatic ecosystems against the 

regression prediction on the basis of two parameters (MTCwater and DT50water) for 

157 out of 181 substances (excluding metals and other substances for which either of the 

two independent or the dependent variable is not available), and the regression line that 

indicates perfect predictions. 

 

The regression line is given by 

 waterwaterwater DTMTCFAETP 50ln358.0ln06.18.8ln +−−=  (26) 
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All three coefficients are highly significant4. Most data points correspond quite well to the 

fitted line. Remarkable is the data point that lies midway the positive horizontal axis but much 

too low. This is the data point for total-PAH. Also remarkable, but less so, is the data point in 

the right upper corner, for 2,3,7,8-TCDD. Figure 5 shows the correspondence between fit and 

actual value on a non-logarithmic scale. 

 

 

Figure 5. Same as Figure 4, but now for the backtransformation from the logarithm to 

the normal FAETPwater. Data points with very high values for FAETP or fit have fall 

outside the plotted region. 

 

Division of the actual value by the estimated value gives ratios of which the largest part lies 

between 0.1 and 6. The poorest fit are obtained for DDT (0.0193) and total-PAH (ratio of 

                                                      
4 The statistical details are: constant: se = 0.437, t = –20.1; ln MTC: se = 0.0266, t = –39.9; ln DT50water: se = 

0.061; t = 5.87. The standard error of the estimate is 1.48. 
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2320). This means that for almost all 157 substances considered, the estimated FAETP is 

wrong by a factor of less than 6. 

 

In the above analysis, metals were omitted, because no half-life value is available. For metals, 

a strategy of including the logarithm of the solid-water partition coefficient turns out to be 

needed, although it adds little in some of the regressions; see Table 2. 

 

Table 2. Regression results for the metals. 

 

Dependent variable Independent variables N R2 

ln FAETPair ln MTCwater, ln Kp 17 0.805 

ln FAETPwater ln MTCwater, ln Kp 17 0.817 

ln FAETPsoil ln MTCwater, ln Kp 17 0.804 

ln TETPair ln MTCsoil, ln Kp 10 0.999 

ln TETPwater ln MTCsoil, ln Kp 9 0.787 

ln TETPsoil ln MTCsoil, ln Kp 9 0.999 

ln HTPair ln ADI, ln TCL, ln Kp 14 0.883 

ln HTPwater ln ADI, ln TCL, ln Kp 14 0.654 

ln HTPsoil ln ADI, ln TCL, ln Kp 14 0.788 

 

It is questionable to what extent a regression model for metals (or, for that sake, inorganics) is 

needed. The number of metals to be considered is quite limited, and these substances require 

only few data items. It is likely that the main need for regression model lies in the large class 

of organic compounds. 

 

Prediction of characterisation factors proceeds as follows in the case of FAETP for emissions 

to water with two explanatory variables that was considered above. Assume that insufficient 

data is available to use the base model for the substance captafol. The regression equation (26) 

can be used to find an estimate of the ln FAETPwater, based on the ln MTCwater (–17.4) and 

the ln DT50water (6.35). This estimate is 11.9, with a standard error of 1.48. The 95%-

confidence interval is given by [9.0, 14.8]. This agrees well with the actual value of 13.2. 
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9. Discussion 
The material presented should not be seen as a definite study or even a definite working plan. 

Only a limited number of regression analyses and analytical studies were performed. The 

purpose was merely to investigate the possibility and usefulness of estimating characterisation 

factors by means of regression models. In that respect, the message of this study is reasonably 

positive. Only two or three parameters suffice to estimate characterisation factors, often within 

one order of magnitude. Equations, such as (26), can be constructed that may serve to estimate 

characterisation factors, given a rather limited number of data items. 

 

On the other hand, one should understand the philosophical problems involved in the set-up of 

the present research. We have used a model to generate outcomes, and now use a regression 

model to estimate the outcomes. This, of course, is no validation whatsoever. It is therefore 

problematic to speak about the degree to which an estimate is “correct”. It is correct with 

respect to the model that is used, i.c. USES-LCA.  

 

For this feasibility study, the USES-LCA model with its data set for 181 substances was used 

(Huijbregts, 1999). When a different model is used, or when a different data set is used, the 

results of the study will change. There are two ways in which changes may occur: 

 the regression coefficients and goodness-of-fit of a particular regression model may 

change; 

 the choice of the “best” regression model may change (other choice of parameters, e.g. 

DT50 soil, Kow etc.). 

When a different model and/or data set is selected, part of the work reported should be carried 

out again. However, the theoretical considerations reported will remain to be valid, and the 

findings on the most critical variables will probably also not change. 

 

Related to this point is the dynamic aspect that is involved in the use of an estimation method 

while at the same time providing a detailed method that may be used if more data is available. 

On the basis of a model and data available now, regression equations may be provided to 

estimate characterisation factors for substances that are not covered by the current databases. 

When the required data items become available in due time, there is no need to use the 

estimated (Simple Base Model) characterisation factor anymore, but the “correct” 

characterisation factor can be calculated with the detailed Base Model. This will lead to an 

updated, improved characterisation factor for that substance. But it will also be possible to 

redo the regression analysis, and to update the regression coefficients (or even to update the 

optimal model specification) on the basis of the newly acquired knowledge, which is a 
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relatively easy job to do. In principle, this may affect, however, all hitherto calculated 

estimates of characterisation factors. Therefore, a Bayesian perspective on the incorporation of 

new information and the updating of beliefs – and thus characterisation factors – should be 

developed within the OMNIITOX IS to deal with this. 

 

In Table 1, there are two alternative regression models for each characterisation factor. For 

instance, the FAETPair can be estimated on the basis of either two or three independent 

variables. The three-variable estimate is much better than the two-variable estimate (R2 = 0.912 

versus 0.725), but it is based on much fewer substances (N = 45 versus 157). It is therefore also 

much less applicable to new chemicals. It appears that there may be a need for more than just a 

detailed Base model and an estimation model (Simple Base Model), but that several estimation 

models are needed. for instance, one estimation model should be applicable for almost every 

chemical, so on the basis of data that are always available. The price of such a model is that its 

estimates are quite inaccurate. For chemicals for which some more data are available, a second 

estimation model should be available. It is less widely applicable, but it produces better results. 

In this way a hierarchy of models could be developed, from extremely simple to detailed via 

moderately advanced. Figure 6 shows the regression results for an estimation on the basis of 

only the molecular weight, a parameter that is almost always available. The R2 is almost 0.3, 

suggesting a not too good fit, but at least an estimate that is far better than tossing a coin or no 

estimate at all. It is an interesting point for discussion how the trade-off between data 

availability and predictive accuracy should be made, especially in the context of the possibility 

of a hierarchical structure of several regression models. If the latter is chosen for, the need for 

a Selection Method should be re-considered of course. 
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Figure 6. The data points for the logarithm of the characterisation factor (FAETPwater) 

for effects of emissions to fresh water on freshwater aquatic ecosystems against the 

regression prediction on the basis of only the molecular weight for 176 out of 181 

substances (excluding substances for which either the independent or the dependent 

variable is not available), and the regression line that indicates perfect predictions. 

 

One development that should be considered is the possibility to construct within the 

OMNIITOX IS a continuum of simplified base models, that is integrated with the base model 

itself. When a user wants to calculate a characterisation factor, he uses the OMNIITOX IS, and 

is prompted to enter all substance-related parameters that he knows. When this is the molecular 

weight, the IS comes up with a prediction with a large uncertainty range. When the user also 

enters the melting point, a different and more accurate prediction is returned. When the user 

enters all parameters that are needed for the base model, the simplification is automatically 

skipped. Because there are hundreds of parameters, and a user may have any number and 

combination of these, there may literally be millions of regression models. A good information 
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system may calculate the coefficients, the prediction and the uncertainty of prediction for one 

such model in a second or less, it may be a good strategy to use this type of online 

simplification at request. 

 

How much time is needed to develop an estimation model (Simple Base Model) on the basis of 

the final OMNIITOX data set and Base Model, depends on the number of toxicity potentials 

and emission compartments to be covered (e.g. HTPair, HTPwater, HTPseawater, ..., 

TETPindustrialsoil), the number of levels within a possible hierarchical structure of regression 

models (coverage of substances, availability of data and accuracy of estimations), and the 

types of substances to be captured (organics, inorganics, metals, ...). 

 

Besides estimates of the regression coefficients, the regression framework offers standard 

errors for the coefficients and a standard error of the estimate as well. These can be used to 

indicate confidence intervals for any estimate made by the regression equation. If, in addition, 

standard errors for the results of the detailed Base model are available, a weighted regression 

can be performed with the inverse of the squares of these standard errors as weights. It may be 

expected that certain data points (characterisation factors) are much more uncertain than 

others, so regression results may well change upon the introduction of error-weighted 

regression. When no such information is available, an alternative strategy would be to use as a 

default that the standard error of a characterisation factor is proportional to its value. This 

would at least reduce the influence of extremely high values, such as for 2,3,7,8-TCDD. 
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